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A hybrid RANS/LES approach is presented and assessed considering several flows,
which can be interpreted as the most general case of the NLDE approach as defined
by Morris et al. [P. J. Morris, L. N. Long, A. Bangalore, and A. Wang, J. Comput.
Phys. 133, 56 (1997)]. A decomposition into three parts of the exact solution of the
Navier–Stokes equations is considered: mean flow, resolved fluctuations, and unre-
solved (subgrid) fluctuations. The mean flow is computed using a classical RANS
method, while resolved fluctuations are derived from a LES method. This approach
is succesfully assessed on the stationary and the pulsed plane channel flow config-
urations. The case of the flow around a low-pressure turbine blade is discussed in
a second step. The hybrid method is also demonstrated to be robust with respect to
several sources of error and provides good results in the case of a coarsened grid
simulation, a reduced computational domain simulation, and nonconsistent mean
flow fields. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Unsteady simulation of turbulent flows is of great interest for many applied and theoret-
ical purposes. But even using the most powerful supercomputers, direct simulation of all
the turbulent motions is still out of range when high-Reynolds-number flows are consid-
ered. Because these flows are of great importance, some ways to describe the unsteadiness
associated with turbulent fluctuations at lower costs than for the direct simulation approach
must be defined.

Two classical approaches have been widely used during the last decades: unsteady
Reynolds averaged simulation (URANS), which relies on an ensemble average of the exact
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solution, and large-eddy simulation (LES), which is based on a low-pass filtering of the
solution (see Refs. [16, 19, 33] for a review). The former is known to give some informa-
tion on the motion of coherent structures, whose definition can be related to the one of a
conditional average, and does not incorporate explicitely a cutoff frequency. This approach
takes advantage of the enormous amount of work devoted to the development of turbulence
models for steady RANS computations (see Ref. [26] for a review) and can be used to study
flows at high Reynolds number in complex geometries. The latter approach makes it possi-
ble, because it is based on an explicit cutoff frequency, to choose the degree of accuracy of
the description of turbulent fluctuations. A well-known drawback of LES when engineering
applications are aimed at is that driving mechanisms, i.e., physical mechanisms which are
responsible for turbulence production, must be resolved and the computational grid has
to be defined in consequence. When driving mechanisms are not correctly represented in
the computation, LES is known to exhibit dramatic errors: turbulence is badly predicted,
leading to significant errors in the mean field. Because very fine meshes are often needed to
capture these mechanisms, LES cannot yet be considered a general engineering tool, and
new ways to use the filtered approach have to be defined.

The approach presented in this paper is a trial that combines both RANS and LES ap-
proaches in order to take advantage of both methods. The idea consists of predicting the
mean flow field with the RANS approach, which is less expensive and thus can be more
easily optimized than LES to get accurate results on the mean velocity field, while locally re-
constructing the unsteady turbulent motion with a LES-type simulation in subdomains. The
expected gain with respect to the classical LES approach is twofold. First, given the mean
field being prescribed, the errors commited on turbulent fluctuations will not pollute it, and
we can expect this method to be more robust than classical LES. Second, if the turbulence-
producing events are localized in a small region, it is possible to restrict the LES-type
computation to a small sudomain included in the global domain, while classical LES would
require consideration of the full domain.

Other coupled RANS/LES approaches can be derived, which are not considered in the
present paper: hybrid multidomain computations, based on a zonal use of RANS and LES
(see Refs. [28, 34]), or simulations relying on “universal models,” which are able to operate
the switch from RANS to LES. Examples of universal models are the two-part model based
on the original work of Schumann (see Ref. [36]), the detached eddy simulation of Spalart
et al. [41], the rescaled RANS approach first proposed by Speziale [42], and the hybrid
dynamic model developed by Germano [5].

In some previous work relying on the same concept of reconstruction of fluctuations,
using unsteady computations around a mean flow field has already been proposed, mainly
for studies dealing with aeroacoustics. Different model equations can be used to describe
the fluctuations. Linearized Euler equations are generally used to predict acoustic wave
propagation (see Refs. [17, 39] for recent examples) but do not give any information about
the generation of the acoustic waves. Acoustic sources can be modeled using statistical
models or evaluated on the basis of normal mode instability waves [49]. In the latter case,
the resulting approach can be viewed as a cross between a classical linear stability analysis
and CFD techniques. A similar approach is to compute the instability modes associated
with the RANS solution, and to identify them with turbulent fluctuations responsible for
noise generation. A recent example is the work done by Korrami and Singer [15] in the case
of the idealized flow around a flap. A more realistic evaluation of the near-field fluctuations
around a mean profile was proposed by Streett [43], who performed a two-dimensional
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temporal direct numerical simulation based on the incompressible Navier–Stokes equations.
Another technique, referred to as the nonlinear disturbance equations (NLDE) approach,
has been developed by Morris and his co-workers to evaluate acoustic sources from a
steady jet computation [20–22], on the basis of a nonlinear inviscid model equation for the
fluctuations. The second main approximation is that mean flow source terms in the nonlinear
disturbance equation can be neglected. More recently, these authors add a subgrid model
to the disturbance equations, in order to take into account the effect of unresolved modes.
They also did reintroduce a part of the mean flow source term into the nonlinear disturbance
equation. The NLDE approach was used by Hansen et al. to simulate the unsteady, two-
dimensional laminar flow around a circular cylinder [8], corresponding to the first coupling
between NLDE with an unsteady mean flow. The first attempt to use it for LES of wall-
bounded flow is due to Chyczewski et al. [2], who assumed that the fluctuations were
incompressible.

The hybrid RANS/LES technique presented in this paper thus appears as the most general
case of the NLDE approach, the exact time-dependent signal being split as the sum of an
ensemble-averaged part and a remaining fluctuating part, without any additional simplifi-
cation. Another important feature is the ability of the method to reconstruct the turbulent
fluctuations in subdomains embedded in the whole RANS domain, resulting in a significant
cost reduction when compared to the classical LES approach, which a priori requires com-
putation of an unsteady three-dimensional solution over the whole computational domain.

The present paper first presents a theoretical framework for this hybrid RANS/LES
approach, which can be interpreted as a generalized multilevel approach (Section 2) relying
on a formal hierarchical decomposition of the exact solution. The associated governing
equations for both compressible and incompressible flows are presented in Section 3, and
the particular case of the proposed three-level RANS/LES technique is detailed in Section 4.
Section 5 presents the results dealing with the assessment of the main features of the method
on academic test cases. The proposed method is first shown to be able to predict fully
turbulent motion associated with a steady mean flow in the plane channel flow configuration,
and its sensitivity to several parameters is discussed. The case of an unsteady mean flow
is then analyzed considering a pulsed channel flow. The use of the method to capture the
transition to turbulence and fully developed flow around a low-pressure turbine blade is
discussed in Section 6. Conclusions and perspectives are given in Section 7.

2. A THEORETICAL MULTILEVEL FRAMEWORK

We first introduce a general theoretical framework for multilevel methods relying on
several different scale-separation operators. Let there be a set of restriction operators
{Gk}, k = 1, N . The main hypothesis is that these operators have some regularizing proper-
ties, in the sense that they render the solution smoother by discarding high frequencies. In
the present work, we will focus on RANS/LES approaches, and each operator can be either
a spatial filtering operator, as is classically used in LES, or an ensemble average operator,
as for the RANS approach.

If the operator Gk corresponds to an ensemble average over the set of samples �k , it is
written as

Gk(u) ≡ 1

Nk

∑
ul∈�k

ul = 〈u〉(k), (1)
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where Nk is the number of samples contained in �k . This definition of the ensemble average
is valid for both classical mean average and conditional average, depending on the choice
of �k . It can represent both steady and unsteady RANS approaches. The ergodic theorem
shows that for a statistically stationary field with finite correlation time, this ensemble
average can be interpreted as a time-average operator (at least asymptotically).

In the case where a spatial filtering operator is considered, we assume that it can be
expressed as a convolution product:

Gk(u) ≡ Gk � u =
∫

Gk(x − � )u(� ) d�. (2)

This expression of the convolution filter is very general, and the problem of its extension to
bounded domains and/or curvilinear meshes is still a research topic. Second-order-accurate
extensions for bounded domains and curvilinear meshes were proposed by Ghosal and
Moin [7] and generalized to arbitrary order of accuracy by Vasyliev et al. [48]. Time-
filtering operators have recently been studied by Pruett [27].

It is important to note that the developments presented below are fully general and can
be applied to all the ensemble average/filtering operators.

Using this family of operators, we can define a set of hierarchical scale-separation oper-
ators {Gk

1 }, k = 1, N :

Gk
1 = Gk ◦ Gk−1◦ · · · ◦ G1 = Gk ◦Gk−1

1 . (3)

A set of hierarchical regularized representations of the field u, {ūk}, k = {1, . . . , N }, can
then be defined as

ūk ≡Gk
1 (u). (4)

The kth-level fluctuation vk is defined as

vk ≡ u − ūk = (
Id − Gk

1

)
(u), (5)

where Id is the identity operator.
By analogy with the classical multiresolution framework as developed by Harten [9] the

details wk,l , l > k, defined as the difference between the two levels of resolution l and k, are
evaluated as follows:

wk,l ≡ ūk − ūl = (Id − Gl ◦ · · · ◦ Gk+1) ◦Gk
1 (u). (6)

Completing the filter family by setting G0 = I d, we obtain wk,0 = vk .
Relation (6) yields the following multilevel decomposition of the data:

u = ūk +
∑
l=1,k

wl,l−1, ∀k ∈ [1, N ]. (7)

Using Eqs. (5) and (7), we can rewrite the fluctuation vk as a function of the details:

vk =
∑
l=1,k

wl,l−1, ∀k ∈ [1, N ]. (8)
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This multilevel decomposition is an extension of the one proposed by Terracol and co-
workers [34, 45, 46], who developed a similar decomposition in the restricted case of
multilevel LES algorithms. The main difference is that, in the present case, the hierarchical
scale-separation operators Gk

1 can be hybrid ensemble average/convolution filter operators.
If each scale-separation operator can be associated with a particular cutoff frequency, the
proposed decomposition can also be interpreted as a more general expression of the mul-
tiresolution decomposition of the data, as proposed by Harten [9]. This is especially true
for convolution filters based on hierarchical operators, which lead to the definition of mul-
tilevel LES algorithms. A similar formal decomposition was used by Quéméré and co-
workers [28, 29, 34] to derive zonal hybrid RANS/LES and zonal multiresolution LES/LES
techniques.

Other mixed scale-separation procedures have been proposed by several authors:
Yoshizawa makes use of a combined statistical average/truncated Fourier expansion de-
composition, while Germano proposes a more general multiscale LES decomposition and
a hybrid statistical average/filtering operator in order to derive hybrid RANS/LES models.
Most of these previous works are summarized in Ref. [6].

3. MATHEMATICAL MODEL

3.1. General Formulation

We consider the case of Newtonian compressible or incompressible fluids described by
the Navier–Stokes equations. Let U be the vector corresponding to the exact solution of
these equations, which are written in compact form as

NS(U ) = 0 = ∂U

∂t
+ ∇ · F(U ), (9)

where NS is the Navier–Stokes operator. Operator F represents the fluxes, which are
nonlinear functions of U .

We now introduce the commutator [. , .] of two operators, a and b:

[a, b](U ) = a ◦ b(U ) − b ◦ a(U ). (10)

It has the following properties:

[F,G] = −[G,F], skew symmetry; (11)

[F ◦G,H] = [F,H] ◦G + F ◦ [G,H], Germano’s identity; (12)

[F, [G,H]] + [G, [H,F]] + [H, [F,G]] = 0, Jacobi’s identity. (13)

Applying the scale-separation operator Gk
1 to Eq. (9), we get the governing equations for

the kth-level filtered variable ūk :

NS(Ū k) = ∂Ū k

∂t
+ ∇ · F(Ū k) = −[

Gk
1 , NS

]
(U ) = −� k . (14)

The term on the right-hand side accounts for all the commutation errors which arise when the
scale-separation operator is applied to the Navier–Stokes equations, including commutation
errors associated with a possible anisotropy of the filter, boundary conditions, and even
numerical errors when discretized equations are considered.
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In the simplest case, where the scale-separation operator commutes with all space and
time derivatives, the commutation error simplifies in classical RANS and LES expressions,
corresponding to the force exerted by unresolved modes on the resolved ones:

� k = [
Gk

1 , NS
]
(U ) = [

Gk
1 , ∇ · F

]
(U ) = ∇ · [Gk

1 , F
]
(U ). (15)

The only source of commutation errors are the nonlinearities of the Navier–Stokes
equations, which appear in the convection term and possibly in the viscous terms when
temperature-dependent viscosity and diffusivity are considered. The force � k is classically
written as the divergence of the Reynolds or subgrid stresses, T k , for RANS and LES,
respectively, which must be modeled (i.e., expressed as a function of Ū k) in order to get a
closed problem. The closure can be written symbolically as

� k = [
Gk

1 , NS
]
(U ) = ∇ · T k ≈M(Ū k), (16)

where M(Ū k) is a statistical model.
The evolution equations for the details are obtained using Eqs. (14) and (6):

∂wk,l

∂t
+ ∇ · F(Ū k) − ∇ · F(Ū l) = � l − � k . (17)

3.2. Compressible Flow Model

We now present explicitly the governing equations for compressible flows. The solution
vector is U = (� , � V T , E)T , where � is the density, V = (u, v, w)T the velocity, and E the
total energy.

The fluxes are expressed as

F(U ) =

 � V

� V ⊗ V + pI d − �

(E + p)V − � : V + Q

 , (18)

where p is the pressure and I d the identity tensor. The viscous stress tensor � is given by
the law

� = 2�(T )

(
S − 1

3
tr(S)I d

)
, (19)

where S = 1
2 (∇V + ∇T V ) and �(T ) is the dynamic viscosity computed following

Sutherland’s law.
The temperature T is given by the perfect-gas-state law,

p = R� T, (20)

with R the perfect gas constant. The viscous heat flux vector Q is given by

Q = −�(T )∇T, (21)

where �(T ) is the diffusivity, which can also be computed as a function of T using
Sutherland’s law.
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The kth-level filtered vector is Ū k = (�̄ k, (� V
k
)T, Ēk . With the introduction of Favre’s

change of variables based on a mass weighting, it can also be written Ū k = (�̄ k, (�̄ k Ṽ k)T ,

Ēk).
The total energy being a nonlinear function of pressure, density, and velocity, i.e.,

E = E(� , p, V ), the term Ẽk will introduce new commutation error terms. To simplify these
terms, it is possible, following Vreman [50], to define the resolved total energy at level k
as Êk = E(�̄ k, p̄k, Ṽ k), leading to Ū k = (�̄ k, (�̄ k Ṽ k)T , Êk). Resolved viscous stresses and
heat fluxes are defined in the same way,

�̂k = 2�̄k(T̄ k)

(
S̃k − 1

3
tr(S̃k)I d

)
�= �̄k, (22)

with S̃k ≡ 1
2 (∇ Ṽ k + ∇T Ṽ k) and

Q̂k = −�̄k(T̄ k)∇ T̄ k �= Q̄k . (23)

Using this form of the kth-level solution, we get the following form of the commutation
error in the simple case where derivatives and scale-separation operators commute:

� k = ∇ ·

 0

(�̄ k V ⊗̃V k − �̄ k Ṽ k ⊗ Ṽ k) − (�̄k − �̂k)

((E + p)V
k − (Êk + p̄k)Ṽ k) − (� : V

k − �̂k : Ṽ k) + (Q̄k − Q̂k)

. (24)

The use of the new definition of the resolved total energy makes also the additional term
∂
∂t (Ēk − Êk) appear in the energy equation, but this term is usually neglected or added to
the pressure term.

3.3. Incompressible Flow Model

We now describe the governing equation for an incompressible flow using a velocity–
pressure formulation. The solution vector is U = V = (u, v, w)T , and the fluxes are ex-
pressed as

F(U ) = V ⊗ V + pI d − �(∇V + ∇T V ), (25)

where p and � denote the static pressure and the kinematic viscosity, respectively. The
incompressibility constraint yields

∇ · V = 0. (26)

The associated filtered relation at the kth level is

∇ · V̄ k = −[
Gk

1 , ∇·](V ). (27)

In the same way, the continuity equation associated with the detail wk,l is

∇ · wk,l = [
Gl

1, ∇·](V ) − [
Gk

1 , ∇·](V ). (28)
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It is worth noting that the two filtered continuity equations, (27) and (28), show that
neither the filtered variables nor the details are solenoidal if the scale-separation operators
do not commute with the divergence operator.

Assuming that the derivatives and scale-separation operators do commute, we get

� k = ∇ · (V ⊗ V
k − V̄ k ⊗ V̄ k). (29)

In the computation presented below, the scale-separation operators were chosen such
that they commute with space and time derivatives, yielding the definition of solenoidal
resolved field and details.

4. APPLICATION TO RANS/LES COUPLING

The hybrid RANS/LES approach proposed here relies on the definition of three com-
ponents of the solution: the mean flow, the resolved fluctuating flow, and the unresolved
fluctuating flow. It is then associated with a three-level decomposition, based on two differ-
ent operators, G1 and G2, which are of different nature. The first operator, G1, is a classical
LES filtering operator, while G2 is a Reynolds ensemble average operator.

In order to render the notations as clear as possible, the ensemble average operator will
be noted using brackets (the simplified notation 〈 〉 is used instead of 〈 〉(1) because only one
ensemble average operator is involved), and the convolution filter will be noted using a bar,
yielding

Ū 2 = 〈Ū 〉, Ū 1 = Ū . (30)

The resulting decomposition is

U (x, t) = Ū 2︸︷︷︸
〈Ū 〉

+ w1,2︸︷︷︸
Ū−〈Ū 〉

+ w0,1︸︷︷︸
U−Ū

, (31)

where the details w1,2 are the resolved fluctuations around 〈Ū 〉 and w0,1 is the unresolved
fluctuations, which will be modeled using an usual subgrid model.

The strategy proposed here to compute the field is to use a classical method based on
Eq. (14) to obtain the RANS field 〈Ū 〉, and then to use a LES method based on Eq. (17)
to compute the details w1,2. The key point of the method consists of solving equations for
w1,2 only, and not for the whole field Ū 1, as was the case for multilevel LES algorithms
[4, 45, 46].

It is worth noting that the resulting algorithm leads to a one-way coupling: LES retrieves
some information from the RANS computation (sources and cross terms in Eq. (17)), but no
feedback from LES to RANS is present. Such a feedback could be obtained by computing the
turbulent force from LES and substituting the parametrized source term � 2 into the RANS
equations and repeating this procedure. This procedure, which requires a large amount of
CPU time, was not implemented during the present study.

An interesting point is that, in the present approach, due to the definition of a hierarchical
set of scale-separation operators, the ensemble average of the filtered solution 〈Ū 〉 appears
at the last level, while the ensemble- averaged exact solution 〈U 〉 is used if a classical RANS
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equation is solved to compute the mean field. These two decompositions are equivalent if
〈Ū 〉 = 〈U 〉, i.e., if the filter does not modify the ensemble-averaged flow. This is the case
when the filter is restricted to homogeneous direction of the flow with constant grid spacing.
When filtering is applied in inhomogeneous directions, or when inhomogeneous filters are
considered, these two quantities can differ, at least from a theoretical point of view [38].

Depending on the turbulence model used at each level, the corresponding pressure can
be replaced by the pseudopressure p∗, which is defined as the sum of the pressure at
the considered level and the turbulent kinetic energy. Thanks to the fact that no feedback
from w1,2 is taken into account in the equation for 〈Ū 〉, the turbulent force −� 2 can be
parametrized using a classical RANS turbulence model. But it is worth noting that the
whole field Ū 1 = 〈Ū 〉 + w1,2 is required to compute � 1 with usual subgrid models.

In the present study, eddy–viscosity-type models are used both at the RANS and the LES
level. The unresolved force term � i is computed as

� i = −∇ · (�i · (∇ V̄ i + ∇T V̄ i )), (32)

where the eddy–viscosity �i is computed using a model. In the present study, classical
closures have been used at each level, which are be discussed in the present paper: the Jones–
Launder k − ε model [14] and the Spalart–Allmaras model [40] for RANS equations and
the selective mixed scale model [33, 35] for the LES equations. The models are described
in the Appendices.

5. ASSESSMENT OF THE METHOD ON ACADEMIC TEST CASES

This section is devoted to the assessment of the method on basic test cases, which corre-
spond to incompressible flows. The numerical method is discussed in Section 5.1.

Results are presented in sections below. First, in Section 5.3, the ability of the method
to reconstruct unsteady fluctuations associated with developed turbulence around a steady
mean velocity profile is assessed on a plane channel flow. The robustness of the method with
respect to the size of the computational domain, the grid resolution, and the error commited
on the mean flow 〈Ū 〉 is investigated. Then, the case of an unsteady mean velocity profile is
considered in Section 5.4, in order to validate the general character of the proposed hybrid
approach. The selected configuration is the periodically pulsed plane channel flow. For this
flow, the unsteadiness of the ensemble-averaged flow can be directly related to the notion
of phase average locked on the pulsation period.

In all theses cases, the mean flow field 〈Ū 〉 is associated with a 1D (one space dimension,
steady case) or a 2D (one space and one time dimension, pulsed case) problem, while the
computation of the turbulent fluctuations is based on a 4D simulation (three space and one
time dimension).

5.1. Numerical Method

The LES numerical method is the same as in Ref. [35]. It is based on a centered
second-order-accurate discretization for the spatial derivatives. This implies that no ar-
tificial dissipation is introduced by the numerical scheme. In order to minimize the aliasing
errors, the convection term is written in skew–symmetric form. Time integration is per-
formed using a semi-implicit integration procedure. Viscous terms are integrated using a
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second-order-accurate backward Euler scheme, while convection terms are treated using an
explicit second-order Adams–Bashforth scheme. Subgrid terms are split in order to separate
dispersive and diffusive contributions. Diffusive contributions are integrated in the same
way as the viscous terms, while the dispersive ones are treated like the convection terms.
Linear systems are solved using a BiCGSTAB method, peconditioned by the inverse of the
diagonal.

For classical LES computations, a forcing term identical to the one used in Ref. [35] is
employed to enforce a constant mass flow rate.

The simulations are initialized by a randomized, divergence-free field.

5.2. Computational Parameters

All the computations are related to the biperiodic plane channel flow. The mean flow
direction, the wall-normal direction, and the spanwise direction are x , z, and y, respectively.
A Cartesian grid is employed. For the LES computations, a uniform grid spacing is used
in the homogeneous direction (x and y), while a hyperbolic stretching is applied to the
wall-normal direction. A one-dimensional stretched grid with the same node distribution
as for the LES grid is used for the computation of the one-dimensional statistical field.

The mean value of the friction Reynolds number Re� = hu�/�, where h is the channel
half-height and u� the friction velocity, is taken equal to 395 for all the computations
presented in this paper.

Several combinations of domain size and grid resolution for the computation of the
fluctuations were investigated in order to compare both the robustness and the accuracy of
the hybrid method with those of the classical LES approach. All the cases are summarized
in Table I.

Four domain sizes were considered.

1. A classical domain for LES-type simulation (cases Dom1, Dom2, Dom3, and Dom4).
In order to prevent spurious coupling of the fluctuations in homogeneous directions, the
domain size in the x and y direction, Lx and L y , respectively, has been chosen such that
L+

x ≈ 5000, L+
y ≈ 1200, where superscript + is related to wall units. The height of the

channel Lz = 2h corresponds to L+
z = 790, corresponding to a full channel configuration.

2. A half-channel configuration, which has the same characteristics as the previous case
in the x and y directions, but only one solid wall is taken into account, and an arbitrary
symmetry boundary condition is imposed at the centerline of the channel (case Dom5). This
case is known to be a very difficult one for classical LES, because of the random unsteady

TABLE I

Geometrical Parameters for Channel Computations

Case L+
x L+

y L+
z Nx Ny Nz �x+ �y+ Min (�z+)

Dom1 4964 1240 790 64 64 67 78 18 1
Dom2 5192 1188 790 44 44 67 118 27 1
Dom3 4964 1240 790 64 64 23 78 18 4.8
Dom4 4964 1240 790 64 64 19 78 18 10
Dom5 4964 1240 395 64 64 34 78 18 1
Dom6 468 108 790 6 6 67 78 18 1
Dom7 468 108 395 6 6 34 78 18 1
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behavior of the field which is not consistent with usual boundary conditions (see the works
of Jimenez and Vasco [13] on the half-channel flow problem and those of Nicoud et al.
[24]).

3. A minimal channel unit domain [10], with L+
x = 468, L+

y = 108 (case Dom6). This
domain size is close to those used by Jimenez and Pinelli [11]. The purpose here is to
see how much the domain size can be reduced while keeping a reliable description of the
autonomous cycle of near-wall turbulence with a relatively coarse grid, and how the hybrid
procedure compares with classical LES. The present domain size is compatible with recent
investigations dealing with the low-dimensional dynamics of turbulent wall flows [10–12,
51]. Following the idea of Jimenez and Simens [12], this “minimal cell” could be used in
practical cases by defining a “crystal” of identical cells in regions where the mean flow
is homogeneous or slowly varying. This strategy has been implemented by Pascarelli and
Piomelli on a turbulent boundary layer configuration [25].

4. A half-minimal channel unit (case Dom7): the same as above, but with a truncated
domain in the wall-normal direction. It is worth noting that the present computations cor-
respond to a true half-domain computation, while a filter was imposed on a full-domain
computation in Refs. [11, 12]. The wall-normal dimension is taken equal to 395 wall units,
which is higher than the minimum value of 60–70 wall units given by Jimenez and his
co-workers and is also compatible with the size of “exact” coherent structures as defined
by Waleffe [51].

Different grid resolutions were selected.

1. A “medium-resolution grid,” with �x+ = 78 and �y+ = 18 (cases Dom1, Dom5,
Dom6, Dom7). The stretching in the wall-normal direction is made in order to obtain
�z+ = 1 for the first grid point near the wall. This grid resolution, used together with a
second-order-accurate method, is expected to yield reliable results for classical LES [52, 53].

2. A “coarse-resolution grid,” with �x+ = 118 and �y+ = 27, on which classical LES
based on a second-order-accurate method is expected to yield bad results [52, 53] (case
Dom2).

3. A coarsened medium grid in the wall-normal direction, in order to investigate the
ability of the hybrid computation to capture turbulence production on badly resolved mesh.
The first grid point near the wall is located at �z+ = 4.8 and 10 in cases Dom3 and Dom4,
respectively.

Statistical moments of the fluctuations are computed by collecting samples in time and
in homogeneous directions. It was checked that the sampling was sufficient to ensure the
convergence of the presented results.

5.3. Statistically Steady Plane Channel Flow

Several mean flow profiles were used for the computation of the fluctuations using the
hybrid RANS/LES method, in order to analyze the sensitivity of the results on the error
commited on the mean flow. These are as follows:

1. Computation of the mean flow by carrying out a RANS computation. In the present
case, the Jones–Launder k − ε model [14] was used. A one-dimensional simulation was
performed. The numerical procedure was based on the compressible Navier–Stokes equa-
tions, but the Mach number was kept low enough to prevent any compressibility effects. The
numerical method is based on a finite-volume cell-centered approach, using the Jameson
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numerical scheme. Steady solution was obtained using a time-marching procedure based on
an explicit time integration (four-step Runge–Kutta scheme) with implicit residual smooth-
ing. The convergence rate was improved using a local time stepping. The fluctuating field
being computed using a finite-difference method, the computed mean velocity is linearly
interpolated at the grid nodes.

2. Computation of the mean flow by performing an ensemble average of a LES compu-
tation. In the present computation, mean flow of the A1 case (classical LES on Dom1) was
selected. Fluctuations reconstructed using this definition of the mean flow are expected to
exhibit the smallest discrepancies with the classical LES results.

3. Making use of an analytical profile of the mean velocity profile. Assuming the symme-
try of the profile with respect to the channel centerline, we have, for one-half of the channel,

u+(z+) =
{

z+, if z+ < 11.83,

1
0.4 log(z+) + 5.5, otherwise.

(33)

It is interesting to note that the resulting profile is singular at the centerline at the channel,
since its gradient is discontinuous.

4. Selecting a uniform mean flow which corresponded to the inviscid solution. This case
presents the maximum discrepancy with the real mean velocity profile.

These four prescribed mean velocity profiles are displayed in Fig. 1. All the computational
cases are summarized in Table II. The first line corresponds to classical LES computations.
The last four lines correspond to hybrid computations, with different evaluations of the
mean flow 〈Ū 〉: “k − ε” is related to the use of steady RANS computation results, 〈LES〉
refers to the use of mean flow computed from LES on Dom1, and analytical and Euler
correspond to the use of the analytical profile and the uniform flow, respectively. The dash
denotes cases which were not considered, and the check mark is related to computations
which were unable to sustain a stable turbulent flow.

An important point of the method deals with the practical computation of the turbulent
RANS fluxes, which appear in the right-hand side of the LES-type equations for the details
(term � l in Eq. (17)). Numerical experiments show that numerical instability occurs when the
imposed mean flow is assumed to be statistically steady and that the imposed discrete mean
field does not correspond to a fully converged solution with the numerical method employed
to solve the equations for the fluctuations, i.e., when ∂〈Ū 〉/∂t �= 0 from a discrete point of
view. This is the case when the mean flow is not computed with the same numerical method
on the same grid as the fluctuations with complete convergence. This difference corresponds
to the introduction of a spurious forcing term in the equations for the fluctuations. A simple
way to alleviate this problem consists of recomputing explicitly the turbulent term � 2 using
the field 〈Ū 〉 on the same mesh as used for the fluctuations with the same numerical method
rather than using the value predicted by the turbulence model, yielding

−� 2 = ∇ · (〈V̄ 〉 ⊗ 〈V̄ 〉 + 〈 p̄〉I d − �(∇〈V̄ 〉 + ∇T 〈V̄ 〉)). (34)

This new way to compute the turbulent force makes it possible to generate equilibrium
solutions no matter which solution was used to define the prescribed velocity field.

The results obtained with the proposed approach are compared with a classical LES
computation on the finest grid considered in this paper and the largest computational domain
(case A1). This LES computation has been previously discussed in Ref. [35].
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TABLE II

List of Steady Channel Computations

Case

Dom1 Dom2 Dom3 Dom4 Dom5 Dom6 Dom7

Classical LES A1 A2
√ √ √ √ √

k − ε B1 B5 B9 B11 — B15 B18
〈LES〉 B2 B6 B10 B12 B13 B16 B19
Analytic B3 B7 — — B14 B17 B20
Euler B4 B8 — — — — —

FIG. 1. Stationary channel computation. Prescribed 〈V̄ 〉 (top) and corrected 〈V̄ 〉 + 〈w1,2〉 (bottom) mean
velocity profile. �, DNS mean velocity field; solid line, classical LES mean velocity field; �, D1 case; �, D2 case;
dashed line, D3 case.
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FIG. 2. Stationary channel computation, resolved Reynolds stresses. Circles, DNS (Moser et al. [23]); solid
line, LES (case A1); dashed line, hybrid (case B2); triangles, hybrid (case B3); crosses, hybrid (case B4); squares,
hybrid (case B1).

The total corrected mean velocity profile, defined as the sum of the prescribed mean flow
and the averaged fluctuating field, is shown in Fig. 1. The ability of the hybrid method
to alleviate problems in the definition of the prescribed mean flow is clearly observed.
Computed resolved Reynolds stresses computed with respect to the total corrected mean
flow on the full channel configuration with the medium and the coarse meshes are displayed
in Figs. 2 to 5. On the fine mesh, all the hybrid computations yield nearly identical results,
in very good agreement with classical LES on the same mesh. This lack of sensitivity to the
prescribed mean velocity field is explained by the fact that all the inconsistencies between
the mean velocity field and the governing equations for the fluctuations will be removed
during the integration by the growth of a nonzero mean fluctuating field. This point is
clarified by combining Eqs. (17) and (31). The resulting evolution for the mean value of the
fluctuating field is obtained:

∂〈w1,2〉
∂t

= −〈∇ · F(Ū 1) − ∇ · F(Ū 2)〉 + 〈� 2 − � 1〉 (35)

= 0. (36)

Relation (36) holds for the ideal continuous equation only: numerical and modeling er-
rors result in a nonzero right-hand side in Eq. (35) and thus to a nonzero value of 〈w1,2〉.

FIG. 3. Stationary channel computation, resolved shear stress. Circles, DNS (Moser et al. [23]); solid line,
LES (case A1); dashed line, hybrid (case B2); triangles, hybrid (case B3); crosses, hybrid (case B4); squares,
hybrid (case B1).
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FIG. 4. Stationary channel computation, resolved Reynolds stresses. Circles, LES (case A1); dash–dots, LES
(case A2); solid line, hybrid (case B6); dashed line, hybrid (case B5); crosses, hybrid (case B8); squares, hybrid
(case B7).

Numerical errors include both discretization errors, incomplete convergence in the compu-
tation of the mean flow, or possible interpolation errors if different grids are used to compute
the mean and fluctuating fields. As a consequence, Reynolds stresses computed using the
hybrif procedure must be defined with respect to the corrected mean flow field Ū 2 + 〈w1,2〉.

FIG. 5. Stationary channel computation, resolved shear stress. Circles, LES (case A1); dash–dots, LES
(case A2); solid line, hybrid (case B6); dashed line, hybrid (case B5); crosses, hybrid (case B8); squares, hybrid
(case B7).
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Another source for nonzero values of 〈w1,2〉 is the possible difference between 〈Ū 〉 and
〈U 〉 (see discussion in Section 4): relation (31) then leads to

〈w1,2〉 = 〈Ū 〉 − 〈U 〉, (37)

showing that the fluctuating will adapt itself to correct some filtering effects on the mean
flow in nonhomogeneous directions.

On the coarse mesh, the use of the hybrid approach is seen to yield much better results
than the classical LES on the same grid, compared with the results of the LES on the fine
grid. The coarse-grid LES exhibits lower peak values of the Reynolds stresses, and maxima
are moved toward the center of the channel. These observations are in agreement with
previous observations of many authors. This improvement is observed for all the prescribed
mean velocity fields, but the best results are obtained when a mean LES velocity field
is prescribed. NLDE results dealing with an incompressible turbulent flat-plate boundary
layer were presented in Ref. [2] with a coarser mesh (�x+ = 184, �y+ = 48). These results
exhibit the same trends as the present LES on the coarse mesh (peaks are flattened and
moved toward the center of the channel). That shows that a too-coarse grid resolution for
hybrid RANS/LES computations may result in loss of accuracy of the method. The fact that
the differences observed when different mean velocity fields are used are larger than on the
fine grid shows that the ability of the method to remove the inconsistencies between the
precribed mean velocity field and the fluctuation is directly governed by the grid resolution.
Consequently, �x+ = 120 and �y+ = 30 seem to be maximum recommended values for a
good description of near-wall turbulence using the hybrid approach.

Results obtained using the coarsened grid in the wall-normal direction are shown in
Figs. 6 and 7. A very good agreement with classical LES with the usual (�z+ = 1) grid
resolution is recovered in case Dom3 (�z+ ≈ 5) for all the considered prescribed mean
velocity fields, while case Dom4 (�z+ = 10) is too coarse to permit a reliable description
of the near-wall dynamics. It is important to note that classical LES on these coarsened
grids was not able to sustain a stable turbulent solution. A much coarser grid was used in
Ref. [2] (�x+ = 250, �y+ = 32, �z+ = 25) with and without wall models, yielding poor

FIG. 6. Stationary channel computation, resolved Reynolds stresses. Circles, LES (case A1); solid line, hybrid
(case B10); crosses, hybrid (case B12); squares, hybrid (case B9).
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FIG. 7. Stationary channel computation, resolved shear stress. Circles, LES (case A1); solid line, hybrid (case
B10); crosses, hybrid (case B12); squares, hybrid (case B9).

results. This indicates that �z+ ≈ 5 appears to be a maximum for the first mesh near the
wall, at least if efficient wall models are not employed.

Results corresponding to the minimal channel configuration are shown in Figs. 8 and 9.
The first point to note is that classical LES was not able to sustain stable turbulent solutions
with the present resolution. It is worth recalling here that spectral methods were used in
Refs. [10–12] with a much finer resolution (�x+ < 15, �y+ ≤ 8) to get DNS results on
the minimal channel configuration. The quality of the present results is satisfactory and
compares well with the one presented in Ref. [11] and the classical LES on the full channel
configuration, no matter which prescribed mean velocity field is employed. Once again, the
best results are obtained when the mean LES velocity field is used.

Finally, results dealing with the half-channel configuration are plotted in Figs. 10 and 11.
The hybrid method yields satisfactory results on the full channel configuration, while larger
discrepancies are observed on the minimal channel configuration. It is worth recalling that

FIG. 8. Stationary channel computation, resolved Reynolds stresses. Circles, LES (case A1); solid line, hybrid
(case B16); dashed line, hybrid (case B17); squares, hybrid (case B15).
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FIG. 9. Stationary channel computation, resolved shear stress. Circles, LES (case A1); solid line, hybrid
(case B16); dashed line, hybrid (case B17); squares, hybrid (case B15).

a symmetry condition is imposed at the channel centerline in all the computations. The
classical LES do not lead to stable turbulent results, while all the hybrid computations
yield reliable results. This can be explained by the fact that the error is commited on
the fluctuating field only, the mean field being not affected. An interesting feature of the
hybrid RANS/LES method is that the error seems to remain located in a small region
(four to five grid point wide) near the artificial symmetry plane. It is worth nothing that
previous work [13, 24] dealing with the half-channel configuration yield poor results or
make use of very complex boundary conditions on the artificial boundary at the channel

FIG. 10. Stationary channel computation, resolved Reynolds stresses. Circles, LES (case A1); solid line,
hybrid (case B19); crosses, hybrid (case B18); squares, hybrid (case B13).
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FIG. 11. Stationary channel computation, resolved shear stress. Circles, LES (case A1); solid line, hybrid
(case B19); crosses, hybrid (case B18); squares, hybrid (case B13).

centerline. Even in the latter case, a spurious boundary layer was detected near the channel
centerline.

In conclusion, the plane channel simulations have shown that (i) the hybrid approach
makes it possible to maintain the accuracy of the simulation while using coarser grids than
are used for classical LES (with �x+ = 120, �y+ = 30, and �z+ = 5 as a limit), (ii) the
hybrid approach makes it possible to reduce the domain size to a halved minimal channel unit
with a LES resolution and crude symmetry condition at the channel centerline, while keeping
reliable results, and (iii) the hybrid approach is more robust than the classical LES approch.

The use of coarser meshes and a reduced computational domain resulted in significant
CPU time saving with respect to classical LES on medium mesh and a full channel compu-
tational domain. Comparisons of CPU time and memory requirements are given in Table III.
These two parameters are normalized by the equivalent requirement for classical LES on
the medium mesh on the full channel domain (case A1). Experience shows that the gain is
almost independent of the definition of the mean flow. The gain in CPU time in the case of
Dom1 is induced by a faster convergence of the method for solving the Poisson equation.

5.4. Periodically Pulsed Plane Channel Flow

We now check the ability of the hybrid method to deal with unsteady mean flow and
turbulence in strong disequilibrium. Previous NLDE computations [8] dealing with unsteady
mean flow were restricted to 2D laminar cases. The pulse channel flow is chosen as a test

TABLE III

Comparison of CPU Costs and Memory Requirement

Case

Dom1 Dom2 Dom3 Dom4 Dom5 Dom6 Dom7

CPU time 0.7 0.33 0.33 0.25 0.5 0.025 0.012
Memory 1 0.47 0.34 0.28 0.5 0.008 0.004
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case. This flow has recently been studied numerically by Scotti and Piomelli [37]. The
mean friction Reynolds number is still taken equal to 395. Computational parameters (mesh,
domain size) are the same as for case A1. Following Refs. [30, 47], a sinusoidal forcing term
is added in the streamwise direction of the momentum mean flow equations, which is equal to

fi = A.UMAX.	.cos(	.t)
i1, (38)

where A is the forcing amplitude, UMAX the value of the mean streamwise velocity on
the centerline of the channel for the steady case, and 	 the pulsating frequency, whose
associated period is referred to as T = 2�/	.

The response of the flow to the unsteady forcing is characterized by the Stokes thickness
ls [30, 47],

ls =
√

�T

�
, (39)

or, in wall units,

l+s =
√

T

��
u� . (40)

For this type of flow, the amplitude A is known to be a less significant parameter than
	 (or T ) [44]. In order to minimize the duration of the computation while having strong
unsteady effects, the parameter l+s was chosen to be small, corresponding to a quickly os-
cillating mean flow. Several computations were studied, corresponding to different values
of the Stokes thickness and the forcing amplitude. Computational parameters are summa-
rized in Table IV. In each case, a classical LES computation and a simulation based on the
proposed hybrid RANS/LES approach were perfomed.

The two selected values of the Stokes thickness correspond to different physical regimes.
For l+s = 2.5, the turbulence remains almost frozen during the whole forcing period [44],
while in the second case the turbulence response is delayed with regard to the forced
oscillations.

The time evolution of the unsteady 〈ū〉 field at two points (z+ = 1 and 395) is shown in
Figs. 12 and 13. As observed by many authors (see, for example, Refs. [30, 47]), a delay
between the near-wall velocity response and the response of the velocity in the center of the
channel (which corresponds to the forced oscillations) is observed. This delay decreases
when l+s increases. For the highest amplitudes (A = 0.3 and 0.5), the near-wall unsteady
mean velocity 〈ū〉 becomes negative for quite a long time, which corresponds to recircula-
tion. Time evolution of the friction Reynolds number is presented in Fig. 14. For C2, C3, and
C4 cases, the two discontinuities correspond to the occurence and the end of recirculation.

TABLE IV

Parameters of the Pulsed Channel Computations

Case

C1 C2 C3 C4

l+
s 2.5 2.5 2.5 8
A 0.1 0.3 0.5 0.3
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FIG. 12. Pulsed channel flow, time evolution of the mean flow velocity 〈ū〉. (Left) C1 case, (right) C3 case.

FIG. 13. Pulsed channel flow, time evolution of the mean flow velocity 〈ū〉. (Left) C2 case, (right) C4 case.

FIG. 14. Pulsed channel flow, time evolution of the friction Reynolds number Re� associated with the mean
flow. �, C1 case; dashed line, C2 case; ×, C3 case; solid line, C4 case.
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FIG. 15. Resolved turbulent kinetic energy, C1 case. Solid line, hybrid RANS/LES method; �, LES.

Figures 15 to 18 compare the time evolution of the resolved turbulent kinetic energy
obtained by the proposed method and a classical LES simulation at four positions. These
positions correspond to z+ = 1, 6.9, 17.3, and 35.3 with respect to the mean friction velocity.
As expected, the high-frequency flow turbulence is almost frozen, while the low-frequency
flow turbulence varies conspicuously. It is notable that the maximum turbulent kinetic
energy for the last case is obtained during the deceleration of the flow, in good agreement
with observations of previous authors. The agreement between classical LES and the hybrid
approach is very satisfactory, with a relative maximum error of 5%.

FIG. 16. Resolved turbulent kinetic energy, C3 case. Solid line, hybrid RANS/LES method; �, LES.
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FIG. 17. Resolved turbulent kinetic energy, C2 case. Solid line, hybrid RANS/LES method; �, LES.

Figures 19 to 26 show the resolved turbulent stresses at the beginning and at the half of
the forcing period obtained by the presented method and by a classical LES calculation. In
agreement with observations of previous authors, normalized Reynolds stress profiles do
not vary in time for cases C1, C2, and C3, while they vary for the C4 case. A very good
agreement between the two methods is observed, demonstrating the ability of the hybrid
RANS/LES method to deal with statistically unsteady flows.

FIG. 18. Resolved turbulent kinetic energy, C4 case. Solid line, hybrid RANS/LES method; �, LES.
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FIG. 19. Pulsed channel flow, C1 case, resolved Reynolds stresses: diagonal components. Solid line, hybrid
RANS/LES method, t/T = 0; �, LES, t/T = 0; dashed line, hybrid RANS/LES method, t/T = 0.5; ×, LES,
t/T = 0.5.

FIG. 20. Pulsed channel flow, C1 case, resolved Reynolds stresses: shear stress. Solid line, hybrid RANS/LES
method, t/T = 0; �, LES, t/T = 0; dashed line, hybrid RANS/LES method, t/T = 0.5; ×, LES, t/T = 0.5.

FIG. 21. Pulsed channel flow, C3 case, resolved Reynolds stresses: diagonal components. Solid line, hybrid
RANS/LES method, t/T = 0; �, LES, t/T = 0; dashed line, hybrid RANS/LES method, t/T = 0.5; ×, LES,
t/T = 0.5.
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FIG. 22. Pulsed channel flow, C3 case, resolved Reynolds stresses: shear stress. Solid line, hybrid
RANS/LES method, t/T = 0; �, LES, t/T = 0; dashed line, hybrid RANS/LES method, t/T = 0.5; ×, LES,
t/T = 0.5.

FIG. 23. Pulsed channel flow, C2 case, resolved Reynolds stresses: diagonal components. Solid line, hybrid
RANS/LES method, t/T = 0; �, LES, t/T = 0; dashed line, hybrid RANS/LES method, t/T = 0.5; ×, LES,
t/T = 0.5.

FIG. 24. Pulsed channel flow, C2 case, resolved Reynolds stresses: shear stress. Solid line, hybrid RANS/
LES method, t/T = 0; �, LES, t/T = 0; dashed line, hybrid RANS/LES method, t/T = 0.5; ×, LES,
t/T = 0.5.



326 LABOURASSE AND SAGAUT

FIG. 25. Pulsed channel flow, C4 case, resolved Reynolds stresses: diagonal components. Solid line, hybrid
RANS/LES method, t/T = 0; �, LES, t/T = 0; dashed line, hybrid RANS/LES method, t/T = 0.5; ×, LES,
t/T = 0.5.

6. APPLICATION TO THE FLOW AROUND A LOW-PRESSURE TURBINE BLADE

We now present results dealing with the application to a practical case: the flow around a
low-pressure turbine blade. This flow exhibits many challenging features for the numerical
prediction: transition to turbulence, vortex shedding, turbulent wake, separation . . . .

The T106 blade configuration is taken as a test case. The Reynolds number based on the
chord and the inlet velocity is equal to 1.6 × 105. The Mach number is taken equal to 0.1.
The inlet flow angle and the exit angle are equal to 37.7 and −63.2 degrees, respectively.
The pitch-to-chord ratio is equal to 0.799. Previous classical LES calculations have already
been carried out in this case [31].

The hybrid method is used to reconstruct the turbulent fluctuations both in the boundary
layer and in the near wake. The gain with respect to the classical LES approach will come
from the drastic reduction in the size of the computational domain.

6.1. Computational Parameters and Numerical Method

The mean flow is obtaind by carrying out a 2D steady RANS computation on the same
mesh and in the same computational domain (in a (x–y) plane) as is used for the LES
[31]. The Spalart–Allmaras model [40] is used in the case. A steady solution is obtained
using a finite-volume solver based on implicit time integration and a second-order-accurate

FIG. 26. Pulsed channel flow, C4 case, resolved Reynolds stresses: shear stress. Solid line, hybrid RANS/LES
method, t/T = 0; �, LES, t/T = 0; dashed line, hybrid RANS/LES method, t/T = 0.5; ×, LES, t/T = 0.5.
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FIG. 27. Low-pressure turbine blade—isocontours of the Mach number of the RANS mean flow solution.

upwind TVD scheme. The Mach number distribution associated with the RANS solution is
presented in Fig. 27. The present configuration was retained because the results are known
to be very sensitive to the capture transition process. The Spallart–Allmaras model is seen
to fail in predicting the existence of a separation bubble on the suction side near the trailing
edge, because of the bad description of transition to turbulence on the suction side. As a
consequence, the use of the coupled RANS/LES approach in this case is expected (i) to make
it possible to get reconstructed fluctuations and (ii) to correct the mean flow distribution
by capturing the separation bubble (iii) at lower costs than for classical LES of the same
configuration.

The hybrid RANS/LES computations are performed in a subdomain containing the tran-
sition zone on the suction side of the blade, the trailing edge, and the near wake. Com-
putational domains of LES, RANS, and hybrid RANS/LES computations are shown in
Fig. 28. Classical LES and RANS computations are carried out using the whole computa-
tional domain, which is divided into several subdomains. Shadded subdomains correspond
to the computational domain used to reconstruct fluctuations using the hybrid approach.
Nonreflecting, characteristic boundary conditions are employed at the boundaries of the
hybrid computation subdomain.

The same grid distribution is used for the hybrid computation as was used for the classical
LES simulation. Along the blade, the grid is defined such that �x+ < 40, �z+ < 10. The first
grid point away from the wall is such that �y+ ≤ 1. The number of points per (x–y) plane

FIG. 28. Low-pressure turbine blade—RANS and LES computational domain. Shadded subdomains corre-
spond to the hybrid simulation computational domain.
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is then reduced from 90,644 (LES, full computational domain) to 26,306 (hybrid method,
restricted computational domain). The spanwise extent of the domain is 3.2% of the chord
in both cases. Thirty points are used in this direction, yielding �y+ < 10. The resolution
is such that the simulation is a quasi-DNS in the transition region and behaves like a well-
resolved LES in turbulent regions. Because of the deficiencies of the RANS computation
and the need for a “healing” of the mean flow prediction in this case, and keeping in mind
previous conclusions drawn from the plane channel flow simulation, this fine resolution
was found to be necessary to get an accurate reconstruction of the fluctuations.

The numerical method and the subgrid model are the same for hybrid computations as
for classical LES [31]. The Navier–Stokes equations are discretized using a cell-centered
finite-volume approach on structured grid. A second-order-accurate numerical scheme is
employed. Convective fluxes are discretized using a modified AUSM + (P) scheme, whose
dissipation is controlled using a wiggle detector in order to render it adequate for LES [18].
Time integration is performed using a third-order-accurate compact Runge–Kutta scheme.

The cost of the hybrid simulation is one-third of that for the classical LES computation.

6.2. Results

Instantaneous views of the reconstructed fluctuations are shown in Figs. 29 and 30.
Coherent structures near the trailing edge and in the wake are observed in Fig. 29, where
a Schlieren-like view is presented. Isocontours of the instantaneous spanwise velocity
component are plotted in Fig. 30 (subdomain boundaries are also shown). The hybrid
simulation is seen to correctly predict the existence of vortex shedding and the structure of
the wake. Transition from a 2D to a fully 3D flow is also seen to occur on the suction side of
the blade before separation, in agreement with previous LES and experimental observations
(see Ref. [31] for a discussion).

Mean flow profiles are compared in Fig. 31. It is seen that both LES and hybrid com-
putations are in good agreement with experimental data because they are able to predict

FIG. 29. Low-pressure turbine blade—instantaneous view of the reconstructed fluctuating field (Schlieren-
like representation).
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FIG. 30. Low-pressure turbine blade—instantaneous view of the reconstructed fluctuating field (spanwise
velocity component).

the separation bubble on the suction side of the blade, while classical RANS fails. It is
recalled that the difference between the RANS solution and the mean flow of the hybrid
computation corresponds to the mean value of the reconstructed fluctuations. As in some
previous channel flow computation with an unrealistic prescribed mean flow, the hy-
brid procedure is seen to be able to “heal” the mean flow deficiencies if a fine grid is
used.

FIG. 31. Low-pressure turbine blade—computed mean velocity profile at different positions (70, 75, 80, and
85% of the chord) on the suction side. Experimental data: dashed line, classical LES; dotted line, RANS; solid
line, hybrid computation.
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FIG. 32. Low-pressure turbine blade—computed rms streamwise velocity profile at different positions (70, 75,
80, and 85% of the chord) on the suction side. Experimental data: dashed line, classical LES; solid line, hybrid
computation.

Computed streamwise turbulence intensity at several positions on the suction side of the
blade are presented in Fig. 32. Similar profiles computed in the wake are shown in Fig. 33.
Both classical LES and hybrid simulations are seen to yield qualitatively similar results.
The overall level of error, compared to experimental results, is the same. Classical LES is
observed to lead to a better prediction in the early stage of transition and separation, while

FIG. 33. Low-pressure turbine blade—computed rms streamwise velocity profile at different positions in the
wake. Dashed line, classical LES; solid line, hybrid computation.
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hybrid computation seems to yield a lower level of error during the last stage of transition.
In the wake, results are very close, and both approaches predict the same maximal level of
turbulent fluctuations.

7. CONCLUSIONS

A hybrid RANS/LES approach, relying on separate evalution of the mean flow field and
the turbulent fluctuations, was proposed. The exact solution of the Navier–Stokes equations
is split into three parts: mean flow, resolved fluctuations, and unresolved (subgrid) fluctua-
tions. The means flow corresponds to the solution of a RANS-type problem, while resolved
fluctuations are computed using a LES-like problem. Unresolved fluctuations are taken into
account, thanks to a subgrid model. This hybrid approach corresponds to the most general
extension of the NLDE approach, as defined by Morris and co-workers.

In the present paper, no simplification was used to derive the evolution equation for
the fluctuations. This approach can be interpreted as a particular, three-level case of a
general hierarchical scale-separation procedure. An associated theoretical framework has
been introduced in the present paper, in both compressible and incompressible flow cases.

This coupled approach has been assessed on the stationary and the pulsed plane channel
flow configuration. In both cases, the hybrid approach is observed to have the same accuracy
as a usual LES simulation, when the same elements (numerical scheme, subgrid model,
computational grid and computational domain, boundary conditions) are used. The results
also demonstrate the robustness of the hybrid RANS/LES method with respect to several
sources of error, such as grid resolution, the size of the computational domain, and some
inconsistancies in the prescribed mean velocity profile. This improvement in the robustness
can be explained by the fact that the separate definition of the mean velocity profile makes
it easier to capture the turbulence production in the near-wall region.

It was also observed that when the prescribed mean velocity flow is not consistent with
the mathematical model employed to describe the fluctuating flow, the use of the hybrid
method makes it possible to recover corrections for the mean flow. But, in this case, the
roubustness of the method with respect to the grid definition and the boundary conditions
is expected to be the same as for the classical LES approach.

At last, the hybrid RANS/LES method was applied to compute the flow around a low-
pressure turbine blade. This last application is a demonstration of the efficiency of the
method on a realistic case. Here, the method was implemented in a structured multibloc
compressible solver, and a challenging flow configuration was selected, where the hybrid
simulation was also asked to alleviate some RANS computations problems.

It was also shown that the method can be used, even if the RANS computation and the
hybrid computation are carried out using very different numerical methods.

APPENDIX 1: THE SPALART–ALLMARAS MODEL

The Spalart and Allmaras model [40] relies directly on a transport equation for the
turbulent viscosity. The compressible form of this model leads to the following equations:

�2 = 〈�〉�∗ fv1, fv1 = � 3

� 3 + c3
v1

, � = �∗

�
. (A.1)
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The modified viscosity �∗ equals �2 away from the walls. The “damping function” fv1 is
based on the well-known logarithmic law of the wall and lets �2 go smoothly to zero near
the wall. A transport equation that applies to the modified viscosity �∗ is

∂�∗

∂t
+ 〈u〉 · ∇�∗ = cb1(1 − ft2)S∗�∗︸ ︷︷ ︸

Production

+ 1

Prtsa
[∇ · ((� + �∗)∇�∗) + cb2(∇�∗)2]︸ ︷︷ ︸

Diffusion

−
[

cw1 fw − cb1

�2
ft2

](
�∗

d

)2

︸ ︷︷ ︸
Destruction

+ ft1 Du2, (A.2)

where S∗ is related to the modified magnitude of the vorticity

S∗ = |S| + �∗

�2d2
fv2, fv2 = 1 − �

1 + � fv1
, (A.3)

where |S| is the magnitude of the vorticity and d the distance to the closest wall. The function
fv2 is built, just like fv1, on the hypothesis of a classical logarithmic-layer behavior. By the
way, � is the Karman constant, � ≈ 0, 41.

The function fw is used to recover the correct decay of the destruction term in the outer
part of the boundary layer, and then to produce a realistic skin-friction coefficient:

fw = g

[
1 + c6

w3

g6 + c6
w3

]1/6

, g = r + cw2(r6 − r ), r = �∗

S∗�2d2
. (A.4)

The functions ft1 and ft2 are some trip functions which make it possible to prescribe the
location of transition to turbulence,

ft2 = ct3e−ct4� 2
, (A.5)

ft1 = ct1gt exp

(
−ct2

	2
t

Du2

[
d2 + g2

t d2
t

])
, (A.6)

where dt is the distance between the current point and the trip point, 	t is the wall vorticity
at the trip, Du is the difference between the velocity at the current point and that at the trip
location, �xt is the grid spacing along the wall at the trip, and gt is given by

gt = min

(
0.1,

Du

	t�xt

)
.

This model has demonstrated its efficiency in many industrial applications [1, 3, 32].

APPENDIX 2: THE K − ε JONES–LAUNDER MODEL

The classical Jones–Launder K −ε model used in the present study includes low Reynolds
source terms [14]. The resulting equations for K and ε take the form

∂K

∂t
+ ∇ · (〈ū〉K ) = ∇ ·

[(
� + �2

k

)
∇K

]
+ �R : ∇〈ū〉 − ε − 2�(∇

√
K )2, (A.7)
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∂ε
∂t

+ ∇ · (〈ū〉ε)

= ∇ ·
[(

� + �2

ε

)
∇ε

]
+ C1 f1

ε
K

�R : ∇〈ū〉 − C2 f2
ε2

K
+ 2��2

(
∂2〈ū〉
∂n2

)2

, (A.8)

where n represents the unit-normal vector to the considered wall and �R is computed using
the eddy–viscosity hypothesis:

�R = −2

3
K I d + �2(∇〈ū〉 + ∇T 〈ū〉). (A.9)

Then, the turbulent viscosity can be obtained by

�2 = C�
K 2

ε
exp

[
−2.5

1 + Rt
50

]
, (A.10)

where Rt = K 2/�ε is the turbulent Reynolds number.
The constants of the model take classical values: k = 1, ε = 1.3, C1 = 1.55, C2 = 2,

f1 = 1, f2 = 1 − 0.3 exp(−R2
t ), C� = 0.09.

APPENDIX 3: LES CLOSURE

The subgrid-scale viscosity �1 is computed using the selective mixed scale model
[29, 33, 35],

�1 = C f�0 (�)|	̄1| 1
2 �

3
2 q

1
2

c , (A.11)

where 	̄1 = ∇ × ū1 and C = 0.06. The local value of cutoff length � is assumed to be equal
to the cubic root of the volume of the corresponding grid cell. The resolved high-frequency
kinetic energy is computed as

q2
c = 1

2
( ˜̄u1 − ū1)2,

where the test velocity field ˜̄u1 is evaluated by applying a three-point-stencil discrete test
filter to ū1. The selection function f�0 (�) is defined as [33, 35]

� = arcsin

( ‖˜̄	1 ⊗ 	̄1‖
‖˜̄	1‖ · ‖	̄1‖

)
, (A.12)

fs(�0) =
{

1, if � > �0,

� n(�), otherwise,
(A.13)

with �0 = 20◦ and n = 2 in present computations. Function � (�) is defined as

� (�) = tan2
(

�
2

)
tan2

(
�0
2

) . (A.14)
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